

Across
1. The slope of the tangent line for any given value of x for a real, continuous function
3. The derivative of a function helps determine where the function is increasing or decreasing
5. The second derivative of a function helps determine the function's
7 is the second derivative of position.
10. When solving an optimization problem, you use (initials) to justify your solution.
15. When $f'(x) = 0$, there is a relative point.
16. In a particle motion problem, when $f'(x) \le 0$, the particle is moving to the
17. The mathematics of change
18. The tangent lines are at a function's extrema.
19 (last name) is credited with founding calculus.
Down
2. The point where a function's concavity changes is called the point of
4. In a particle motion problem, when $f'(x) \ge 0$, the particle is moving to the
6. A line that connects two points of a function.
8. At the point of inflection, the graph its tangent line.
 The lines are above the function when f" ≤ 0.
11. When f' switches from positive to negative, there is a relative for f.
12. When f' switches from negative to positive, there is a relative for f.
13. Taking higher powers of a function ("climbing up the ladder")
14 is the first derivative of position.

Math 4 Honors Unit 6 Test Review

- Name _ Date_
- 1. Short essay questions based off of your notes & vocabulary
- 2. Use the average rate of change (slope) formula
- 3. Use the Power Rule to differentiate of a function
- 4. Use the derivatives and number line analysis to find the coordinates of the local extrema (max/min), the coordinates of the inflection point(s) and concavity of a function. Try this function: $f(x) = x^3 - 1.5x^2 - 18x$

$$f'(x) = 3x^{2} - 3x - 18$$

$$0 = 3x^{2} - 3x - 18$$

$$0 = x^{2} - 3x - 18$$

$$0 = (x - 3)(x + a)$$

$$0 = 2x - 1$$

$$0 =$$

0 = 2x-1

Write the equation of a tangent line to f when x = -4.

x + 16 = 42(x + 4)

- 5. Use the position, velocity & acceleration functions to solve vertical motion & particle motion problems.
- 6. Sketch & label the graph of a function given certain criteria.

If f is a function such that: f'(1) = 0 Horiz. T.L. f'(-3) = 0f'(x) < 0 for -1 < x < 1f'(x) = 0 when x = -1 and x = 1 **5n** f''(x) > 0 elsewhere, $C \subseteq \uparrow$ graph f as best you can.

7. Three Optimization Problems

Practice Website

The Derivative as a Function

http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_as_a_function.html

Reconstruct f from its First Derivative

 $http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_app_1_graph_AD.html \\ \bigcirc$

Derivatives and the Shape of a Graph

http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_shape_of_a_graph.html

Identify the Derivative Function

 $http://webspace.ship.edu/msrenault/GeoGebraCalculus/derivative_matching.html \\$

Math 4 Honors Unit 6 Test Review

Name	
Date	

- 1. Short essay questions based off of your notes & vocabulary
- 2. Use the average rate of change (slope) formula
- 3. Use the Power Rule to differentiate of a function
- 4. Use the derivatives and number line analysis to find the coordinates of the local extrema (max/min), the coordinates of the inflection point(s) and concavity of a function. Try this function: $f(x) = x^3 - 1.5x^2 - 18x$

Write the equation of a tangent line to f when x = 4.

- 5. Use the position, velocity & acceleration functions to solve vertical motion & particle motion problems.
- 6. Sketch & label the graph of a function given certain criteria.

If f is a function such that:

$$f'(1) = 0$$

 $f'(-3) = 0$
 $f'(x) < 0 \text{ for } -1 < x < 1$
 $f'(x) = 0 \text{ when } x = -1 \text{ and } x = 1$
 $f'(x) > 0 \text{ elsewhere,}$
graph f as best you can.

7. Three Optimization Problems from the Day 2 & Day 3 problem sets

1

Differentiate the following:

a.
$$y = 5x^3 - 4x^2 + 2x - 6$$

b.
$$y = 5x^2 - \frac{3}{x^3}$$

c.
$$y = \sqrt[4]{x} + \sqrt[3]{x}$$

$$\mathbf{d.} \qquad y = \frac{1}{\sqrt{x}}$$

Extra Practice

2

The table below gives the number of lawyers in the U.S. between 1960 and 1985, as reported in the Statistical Abstract of the United States 1988.

Year	Number of Lawyers
1960	285,933
1963	296,069
1966	316,656
1970	355,242
1980	542,205
1985	655,191

- a. Find the average rate of change in the number of lawyers from 1960 to 1980.
- b. Find the average rate of change in the number of lawyers from 1980 to 1985.
- 3. A cylindrical can, with a lid and a capacity of 2000π cubic feet, is to be constructed using sheet steel. What dimensions for the can should be chosen to minimize the amount of sheet steel required?
 (1-R)

Extra Practice Answers

b)
$$y = 5x^{2} - 3x^{-3}$$

 $y' = 10x + 9x^{-4}$

c)
$$y = x^{\frac{1}{2}} + x^{\frac{1}{3}}$$

c)
$$y = x^{\frac{1}{4}} + x^{\frac{1}{3}}$$

 $y' = \frac{1}{4}x^{-\frac{3}{4}} + \frac{1}{3}x^{-\frac{1}{3}} = \frac{1}{4}\sqrt[4]{x^{-3}} + \frac{1}{3}\sqrt[3]{x^{-2}}$

4)
$$y = x^{-\frac{1}{2}}$$

 $y' = -\frac{1}{2}x^{-\frac{3}{2}} - \frac{1}{2}\sqrt{x^{-3}} = \frac{-1}{2\sqrt{x^3}}$

3.
$$2000\pi = \pi r^2 h$$

3.
$$2000\eta = \eta r^2 h$$
 $5A = 2\eta r^2 + 2\eta r h$ $= 2\eta r^2 + 2\eta r \cdot \frac{2000}{r^2}$ $= 2\eta r^2 + \frac{4000\eta}{r}$

$$5A' = 4nr - 4000nr^{-2}$$

$$70 = 4r^{3} - 4000$$

$$9 = 4r^{3} - 4000$$

$$70 = r^{3} - 1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$

$$1000$$